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Time-dependent motion of a rotating stratified fluid is analyzed within the quasi- 
geostrophic approximation. A few examples of mechanically driven flow are 
analyzed. It is found that the motion is characterized by the ratio Bof the stability 
frequency and the Coriolis parameter. Thus the ratio of the horizontal andvertical 
characteristic scale is in general O(B). In  particular the decay process caused by 
a horizontal boundary will penetrate a distance B-lL into the fluid, L denoting 
the horizontal scale of the motion. 

1. Introduction 
We consider here some aspects of small amplitude time-dependent motion of 

a stratified rotating fluid. We will assume that the time scale of the process under 
consideration is large compared to the rotation time but small compared to the 
time that is required for diffusion to penetrate through the interior of the system. 
An example of this type of motion that has been given some attention in the 
literature is the spin up process that occurs as a response to a small change in the 
rate of rotation of the container that encloses the fluid. Greenspan & Howard 
(1963) worked out this problem in detail in the case of a homogeneous fluid. The 
spin up of a stratified fluid has been treated by Holton (1966) and Pedlosky (1967) 
with strikingly different results. It is shown here that neither treatment is 
correct. Holton obtained a solution with the right qualitative features but used 
an incorrect boundary condition on the vertical wall of his cylindrical container, 
disregarding the fact that the boundary layer on this wall when thermally 
insulating is unable to transport an appreciable amount of fluid. Pedlosky, on 
the other hand, realized this but drew the false conclusion that the boundary 
layer on the bottom does not exist and consequently that ‘the interior spins up 
by a strictly diffusive process’. 

Besides the ‘spin up’ problem, a few other illustrative examples of time- 
dependent flow will be analyzed. 

2. The quasigeostrophic approximation 
2.1 The approximate equations 

In  this section we will derive a system of approximate equations governing small 
amplitude time-dependent motion in the parameter range typical for geophysical 
phenomena. In this connexion we will not specify any complete initial or boundary 
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conditions. This means that we are forced to base the derivation on requirements 
on the scales of the interior fields rather than on scales imposed on the system from 
the exterior. However, conditions in terms of exterior quantities may always be 
formulated, when relations between scales imposed through the boundary con- 
ditions and the interior scales have been found. 

Within the Boussinesq approximation the equations governing motions of 
an inhomogeneous fluid in a frame of reference rotating with angular velocity i2 
may be written 

po  (g + 2Qk x v* = - V*pT - p r g k  + p , ~ V * ~ v * ,  1 
dp:/dt* = ~ V * z p : ,  

v*.v* = 0, 

( 2 . 1 4  

( 2 . l b )  
( 2 . l c )  

a a  a a a 
' at* at* ax* ay* ax* '  
-=-++*---++*-+w*- 

v* is the velocity vector with components (u*,v*,w*) in the Cartesian 00- 
ordinate system (x*, y*, z*), v and K are the diffusivities of momentum and density, 
k is a vector with components (0, 0 , 1 ) ,  p: is the pressure, pf is the density and p o  
is a constant density such that 

In  deriving (2 .1 )  we have made two assumptions not generally included in the 
Boussinesq approximation. Thus we have neglected the curvature of the geo- 
potential surfaces (including the potential of the centrifugal force) and assumed 
that the gravitational acceleration - gk is antiparallel to the rotation vector Slk. 
(It may be pointed out that although this last assumption is usually not valid in 
geophysical applications, we obtain essentially the same set of equations without 
this assumption, provided the depth of the fluid is much smaller than the hori- 
zontal scale of motion, which is often the case in geophysical situations.) 

Let us split up the density and pressure field into three parts according to 

Iff -Pol < P?. 

Pt* = Po+P~(z* , t * )+P* (X* ,Y* ,X* , t * ) ,  ( 2 . 2 ~ )  
p? = pZ(z*, 6") +p*(x*, y*, z*, t*),  (2 .2b)  

where p,* and p,* are defined by 

apyat* = Ka2p;laz*z, (2.3) 
0 = - v*P: - (Po+P; )gk ,  (2.4) 

together with initial and boundary conditions on p$ depending only on z* and 
t* (to be discussed in $2.2) .  

We observe that the definition of p,* guarantees that p,* is independent of x* 
and y* for all times, which is required by (2 .4) .  Let us now substitute (2 .2 )  into 
(2 .1)  utilizing (2 .3 )  and (2.4). We obtain 

P O  dt* +- 252k x V* = - V*p* -P*gk+PovV*2v*, ( 2 . 5 ~ )  r* 
(2 .5b)  

v*.v* = 0. ( 2 . 5 ~ )  
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We will not consider boundary conditions involving the pressure. Accordingly 
(2.4) will not be needed since (2.5) and (2.3) are independent o f p z .  

Observe, however, that p: has to be adopted as a new dependent variable. 
Equations (2.3) and (2.5) will now be non-dimensionalized using the following 

(2.6a) 
transformations 

t* = Tt,  (2.6b) 

( 2 . 6 ~ )  

(2.6d) 

(2.6e) 

(z*, Y*, z*)  = L(x ,  y, 4,  

(u", u*, w") = U(u ,  21, w), 

p* = Pp = 2!2Up,Lp, 

p" = Qp = 2!2Up0g-lp, 

P,* = Qs ~v P.6A 

The choice o f P  and Q is motivated by the expectancy that the pressure gradient 
together with the gravitation and Coriolis forces should dominate the momentum 
equations. 

We obtain in component form 

(2.7a) 
au a 
at ax S-+RV.VU-V = --p+EV2u, 

where 

(2.7b) 

( 2 . 7 ~ )  

ST+RV.V/I+B'-W aP = a-'EV'p, (2.7d) 

v . v  = 0,  (2.7e) 

av a 
S-+Rv.Vv+u= --p+EV%, 

at aY 
aW a 
at a2 

S-+RV.VW+P = --p+EV%, 

dt az 

(2.8a) 

(2.8b) 

( 2 . 8 ~ )  

(2.8d) 

(2.8e) 

We want to study quasigeostrophic motion with a dimensional time scale, 
large compared to the rotation time but still small compared to the diffusive 

(2.9a) time scales L'lv and L 2 / ~ .  If 
2 O ( l ) ,  

the corresponding restriction on S becomes 

l > S @ E .  (2.9b) 

The non-linear terms may always be neglected compared to the local time 

R < 6. ( 2 . 9 ~ )  derivatives if 
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When the process under consideration is axisymmetric, the influence of the 
non-linear terms in (2.7) is reduced since the main part of the velocity becomes 
perpendicular to the momentum and density gradients. It turns out that in this 
case ( 2 . 9 ~ )  may be replaced by the much weaker condition 

R <  1. (2.9d) 

The parameter B is assumed to satisfy 

B = O(1) (2.9e) 

when compared with the small parameter 6. From the definition of Q given by 
(2.6e) combined with (2.8) we can derive 

&I&, = BP2R, 

p” < p:. 
or in view of (2.9) and (2.6e7f) 

(2.10) 

(2.11) 

Thus in the regime defined by (2.9) the field of density anomaly is dominated by 
p,*, and p* may be considered as a perturbation on the ‘basic stratification’ p:. 

The relative importance of this basic stratification and the mean rotation of 
the system is expressed by the ratio B of the stability frequency, N = J(Q,g/p,L), 
and the Coriolis parameter, 2Q. In  the interior of the system, where the scales 
introduced in (2.6) are representative, the magnitude of an individual term in 
(2.7) is measured by its coefficient. Thus we may take advantage of conditions 
(2.9) through an expansion, valid in the interior, according to 

u = uo + u’6.. . , 
v = VO+V‘ d..., 

(2.12a) 

(2.12 b)  
w = wO+w’6 ..., (2.12 c) 

p = p0+p16 ..., ( 2 . 1 2 4  

ps = p:+p;6 .... (2.12.f 1 
p = po+p16 ..., (2.12 e) 

When (2.12) is substituted in (2.7) utilizing (2 .9~-e)  we obtain the zero-order 

(2.13 a) 
equations 

-210 = - apolax, 
+ UQ = - apolay, 
pQ = -apopz, 

B2WQappz = 0, 

auolax + avolay + awopz = 0, 

ap :p  = 0 
and the first-order equations 

(2.13 b )  
( 2 . 1 3 ~ )  

(2.1 3 d) 
(2.13e) 
(2.13f) 

(2.14 a)  

(2.14b) 
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( 2 . 1 4 ~ )  

(1.24d) 

(2.14e) 

For convenience we introduce a function q5 defined by 

+ = -apo/at. (2.15) 

From (2.13) and (2.15) we obtain 

azcopt = a+/ay, 
w p t  = -a#px, 
a p p t  = a + p ,  

wo = 0, 
0 

s - Ps(t=0)- 

Introducing (2.16) into (2.14a, b, d )  we obtain 

(2.16 a)  

(2.16b) 

( 2 . 1 6 ~ )  

( 2 . m )  

(2.16e) 

(2.17 a) 

(2.17b) 

( 2 . 1 7 ~ )  

Equation (2.17) combined with the first-order continuity equation (2.14e) gives 

(2.18) 

Equation (2.18) is a linearized version of the ' quasigeostrophic potential vorticity 
equation' (see, for example, Charney 1949 or Phillips 1963). 

The counterparts of (2.16), (2.17) and (2.18) governing axisymmetric processes 
are obtained with a similar procedure. With ZG = u0+Sui ... as the radial, 
v = vo + Sv'. . . as the azimuthal and w = wo + Sw'. . . as the vertical non-dimensional 
velocity in the polar co-ordinate system (r,  'p, z) we obtain, utilizing conditions 

(2.19a) 

(2.19b) 
(2.19 c) 
(2.19 d )  

(2.1 9 e )  
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U' = a$/ar, (2.20 a) 

(2.20b) 

(2.21) 

We require that the basic stratification ps is stable, that is 

which means that (2.18) and (2.21) are elliptic. In  the examples considered below 
we will assume 

(2.22) 

It is, however, important to notice that the general properties of (2.18) and (2.21) 
indicate that the qualitative behaviour of the solution will not depend critically 
on this assumption as long as pt is a smooth function of x.  

2.2. Discussion of initial and boundary conditions 
Theexpansion(2.12) usedtoderive (2.16)-(2.21)isbasedonconditions (2.9) which 
are only valid in the interior. Accordingly we cannot expect that solutions to 
(2.16)-( 2.21) should describe the behaviour in the diffusive regions close to the 
boundary. This means that our solution will in general not be able to satisfy the 
complete boundary conditions prescribed at  the wall. Similarly, the condition 
on the timescale given by (2.9b) indicates that the initial conditions must be 
chosen within certain restrictions. 

Let us first examine what we must specify to determine a solution from 
(2.16)-( 2.18) or (2.19)-( 2.21). The purpose of the analysesis to describethedevelop- 
ment in time of the zero-order fields (vo,pO,p:). From (2.16) or (2.19) we find that 
if $ is known these zero-order fields are completely determined from the initial 
distributions (vo, po, pt),=,. In  particular we observe that the zero-order basic 
density field p: is independent of time whether p:(r=o, is a linear function of z 
or not, and that the boundary condition on the density anomaly (that is in general 
the thermal boundary condition) does not influence p!. 

The determination of q5 on the other hand requires only specification of a 
boundary condition sufficient to solve the elliptic equations (2.18) or (2.21). This 
boundary condition may be formulated in terms of (v . n)B, the interior velocity 
normal to the boundary evaluated at the boundary. In  the axisymmetric case 
or when the boundary is horizontal, this is a straightforward matter using (2.20) 
and (2.19a, d )  or ( 2 . 1 7 ~ )  and (2.16d) respectively. A non-horizontal boundary in 
the three-dimensional case requires a somewhat more detailed examination. 
Thus (2.16) provides a relation between the variation of # along a horizontal 
tangent to the boundary and (vo. n)B while (2.17) gives a condition on $ in terms 
of the total outflow from the boundary at  a certain level. When combined these 
conditions should be sufficient to determine $. This case will, however, not appear 
in the examples we are going to analyze. 
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To sum up we find that the solution in the interior is determined if (vo, po, p:)r=o 
and (v. n)B are specified. 

The physical counterpart of ( ~ . n ) ~  is the velocity perpendicular to the 
boundary just outside the diffusive boundary layer attached to the boundary. 
Accordingly ( ~ . n ) ~  is not necessarily given by the normal velocity at the 
boundary; we must take convergence in the boundary-layer transport into 
account. A general treatment of the boundary layers occurring in rotating in- 
homogeneous fluid flow will be presented by the author in the near future. In  
this connexion we will only apply a few simple special cases, which can also be 
found in the paper by Pedlosky (1967). As a background we will, however, state 
briefly some general properties of the boundary-layer flow. 

The transport, which is the quantity of interest in this connexion, depends on 
the degree to which the interior fields do not satisfy the real boundary conditions 
on the density anomaly and the velocity. Observe that the boundary condition 
on the total density anomaly (in the interior represented by p$ +p* = &, ps + Qp) 
should be considered, not only the deviations p* from the basic field p;, It turns 
out (Walin, in preparation) that the behaviour of the boundary layer depends 
critically on the magnitude of B and I tan91 where cp is the angle between n and k. 
When B or I tan cp I increases, that is when the boundary becomes steeper or the 
basic stratification stronger, the thermal conditions become successively more 
important. When B ltancpl 1, the kinematical conditions dominate, and the 
Ekman layer theory for a homogeneous fluid may be used to determine the 
boundary-layer transport. On the other hand, when B ]tan91 B 1 the transport 
crossing horizontal surfaces is completely determined by the interior field of 
density anomaly, p:+p*, and the associated boundary condition at the wall. 
Furthermore, if the boundary is insulated this transport is O(E)  which is negligible 
compared to the Ekman transport on a rigid boundary O(ES), since E i  < 1. 
Analogously for a stress free horizontal ( B  ltancpl 4 1) boundary the boundary- 
layer transport becomes O(E) .  When B and Itancpl are O(1) the thermal and 
kinematical influence on the boundary -layer transport cannot be separated and 
this intermediate case will be avoided in the present context. Since we want to 
concentrate on mechanically driven flow, we will assume that the boundaries are 
either horizontal, in which case the boundary-layer transport is obtained from 
the Ekman theory, or vertical and insulated in which case the vertical transport 
is O ( E ) .  It may be pointed out that thermally driven flow may be considered 
separately by assuming that the horizontal boundaries are stress free, while the 
vertical boundaries are subject to thermal forcing. 

3. Source flow in unbounded region 
We will consider the process that results from the introduction of fluid inside 

a finite region of an unbounded rotating fluid with a stratification of the form 
(2 .22) .  Specifically we want to describe the distribution of the swirling flow that 
will be accelerated in the surroundings of the source. The source region, located 
in the proximity of a point 0 at r = x = 0, is assumed to be cylindrically symmetric 
around the z-axis. The integrated volume flux through any surface S enclosing 
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the source region is Ff(t) where f ( t )  = O( 1) and F is the strength of the source 
(with dimension 'volume/time'). In  terms of the non-dimensional velocity v we 
obtain the integral constraint 

where v, represents v evaluated on the surface S enclosing the source and dS 
is a surface element on S with local unit normal n. 

Sufficiently far from 0, say outside So, the perturbations generated by the 
source necessarily become sufficiently small for (2.19)-(2.21) to be applicable. 
Outside#, (3.1) may be expressedin terms of q5 using (2.12), (2.19) and (2.20). If 
the surface is cylindrically symmetric we obtain to lowest order in 6 

where n, and n, are the radial and vertical components of n, and S is assumed to 
lie outside So. 

Equation (2.21) subject to (3.2) has the solution 

q5 = $1 + $27 ( 3 . 3 4  

where 

and 

F B 
4?l 

$1 = - m2 &-lf(t) - D-1, (3.3b) 

(3.3c) 

( 3 . 3 4  

The meridional circulation associated with $2 does not contribute to the volume 
flux through S. If the length scale of So, outside which (3.3) is assumed to be 
valid, is chosen as reference scale, we have 

D < O(1) outside 8,. 
Since we must require 154 G O P ) ,  
we obtain the two conditions (remembering that B = O( 1)) 

FIUL2 < O(S) (3.4) 
and d r ,  2 ,  t )  G O(1). (3.5) 

Using (2.8a, b ) ,  (3.4) may be written 

F7/L3 < O(R) 

or, in view of (2.(3d), Fr/L3 < 1. (3.8) 

The unspecified function g(r,  x ,  t )  depends 011 the distribution over 8, of vs,. n. 
Let us assume that vs, . n is a smooth function satisfying 

In this case we have (3.8) 
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and (3.5) is automatically satisfied if (3.4) is valid. Equations (3.8) and (3.3) imply 

4 2  = D-lO(41). 

Accordingly, $ is dominated by when D > 1. 

II t r  

FIGURE 1. Source flow in stratified rotating fluid. Illustration of meridional flow and 
distribution of angular velocity (o0) with dominating (B  = 2) and weak (B = +) strati- 
fication. 

The meridional velocities associated with are obtained from (3.3b) using 
(2.12), (2.19) and (2.20). To lowest order in S we obtain 

(3.9a) 

(3.9b) 

The meridional flow given by (3.9) is illustrated in figure 1. We observe that when 
B = 1, (3.9) is identical with the corresponding expressions for source flow in 
a non-rotating homogeneous fluid. When B > 1 the outflow occurs mainly in 
horizontal directions, while when B < 1 the flow is concentrated around the 
z-axis. 

is obtained from (3.3) with 
the aid of (2.19b) 

The zero-order swirling flow vQ connected with 

(3.10) 
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We must require lvo) < O( l), which in view of (3.4) gives the additional condition 

Equation (3.11) implies that 
= o(FT), 

(3.11) 

(3.12) 

where I' is the total volume introduced in or sucked out from the fluid region by 
the source (or sink). Equations (3.6) and (3.11) may be expressed as 

(3.13) 

where V, N L3 is the volume enclosed by So. Equations (3.11) and (3.13) reflect 
the fact that a stationary source creates a steady acceleration of the fluid. 
Accordingly if the solution should be valid outside a fixed surface S,, we must 
restrict the total amount of fluid introduced by the source. 

The quantity easiest to observe in an experiment is probably the angular 
velocity OJO = vo/r. From (3.10) we obtain 

(3.14) 

If o:t=o) = 0 the angular velocity is constant on the ellipsoidal surfaces 

as illustrated in figure 1. 
D2 = r2+ ( B z ) ~  = constant 

4. Decay of motion in a horizontally unbounded region 
Let us study the time-development of perturbations satisfying (2.9) on a 

rotating stratified fluid confined between two horizontal rigid surfaces at  z = f 1. 
The boundaries are at  rest in the rotating reference frame and the initial basic 
density field is of the form (2.22). We will assume that the lateral boundaries are 
sufficiently far away to be neglected, which requires 

where 9 is any one of tho perturbation fields v, p andp, and M is a finite constant. 
As indicated in S 2.2 and also correctly assumed by Holton (1965) the boundary 

condition at z = c 1 is that given by the Ekman theory for homogeneous fluids 
as derived, for example, by Charney & Eliassen (1949). In  terms of the interior 
non-dimensional velocity field, the boundary condition takes the form 

The 'interior' vertical velocity w in (4.2), physically corresponds to the vertical 
velocity just outside the thin boundary layers (of non-dimensional thickness Et) ,  
and is caused by the spatial variations in the transport carried by the boundTy 
layers. According to (2.12) and (2.16) we have w = O(8). If, as in this case, the 
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system is driven by the Ekman layers, the scale of w introduced through (4.2) 
will charachrize the process which suggests the choice, 

8 = EB. (4.3) 
Introducing (4.3) into (4.2) and expanding according to (2.12)) the lowest order 
eauation becomes 

where we have used (2.17 c) for the elimination of w‘. Differentiating with respect 
to time and using ( 2 . 1 6 ~ ~  b)  to eliminate uo and vo in (4.4) we obtain 

(4.5) 

If (4.1) holds a general solution to (2.18) satisfying the boundary conditions 
at  z = & 1 in the form (4.5) may be written as the Fourier integral 

where f = exp ( - qt) cosh mz/cosh m, (4.6b) 
g = exp ( - rt) sinh mzlsinh my ( 4 . 6 ~ )  

(4.6d) 

q = i d 2  B4(k2+Z2)coshm/sinhm, (4.6e) 

and the spectral distributions A,(k, I )  and A,(k, I )  are at our disposal to satisfy 
the initial conditions. The zero-order horizontal velocity field (uo, vo) associated 
with (4.6) is obtained from ( 2 . 1 6 ~ ~  b). 

m2 = B2(k2 + Z2) = B2h2, 

r = 442 B4(k2+Z2)sinhm/coshm, ( 4 . V )  

uo = u: + UO,) (4.7u) 
vo = v;+vO,, (4.7b) 

where the first terms decay with time: 

(4.7c) 

( 4 . 7 4  

while the functions of integration ui and v; are independent of time. We have 

(4.8) 

(uO,, &) is the quasistationary velocity field remaining when the process we are 
studying here has terminated. In  a study of the final decay of the velocity field, 
characterized by 6 = O(E),  (u,v) = (&,vz) should be used as the initial con- 
dition for the horizontal velocity. 

(u0, vO)t+m = CuO,, v“,. 

The boundary condition in the form (4.4) applied at t + 03 implies 

(!?$!$) = 0. 
e = f l  

(4.9) 
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From (2.13) it  is easily shown that 
auo a v o  -+- = 0. ax ay 

(4.10) 

Equations (4.9) and (4.10) combined with (4.1) require that 
(u%,.%),,=*, = 0. (4.11) 

The solution for (uo,vo) given by (4.7) may be adjusted to any smooth initial 
distribution ( u o ,  satisfying (4.1) and (4.10). The decaying part (u:, vi) of the 
velocity field (u0,vO) is determined solely from the initial distribution at the 
boundaries. Since uo and v0 are coupled through (4.10) and (4.1) we need only 
discuss, for example, uo. Suppose C+ and C- are the Fourier transforms of 

0 u(t=o,z= kl) ,  defined by 

u:t=o,z= *1) = 11 C, exp i ( k z  + Zy) dkdZ. (4.12) 
-m 

Equation (4.12) combined with (4.7) and (4.1 1) determines A ,  and A ,  according to 

( 4 . 1 3 ~ )  

- :Az  = +(C+-C-).  (4.13b) 

When A,(k, 1 )  and A, (k ,  I )  have been determined from the initial distribution at  
z = 5 1 according to (4.13), (u~,v~) is known everywhere and (uz,v$) may be 
determined from the initial condition in the interior of the system. 

(uO, .O),=, = (4, .:It=, + ( ~ 0 2 ,  0 0  .m). (4.14) 

Introducing (4.13) and (4.14) into (4.7) we obtain the solution corresponding to 
the initial distribution (uo, vO)t-o 

(%to, vO) = (u:, .:I + (uO, vO)t=0 - (%, 0 0  vd)t=o, (4.15 a) 
-where 

u: = 11 [ (c, + C-)f+ 3 (C, - C-) g]  exp i ( ks + Zy ) dk dl ,  (4.1 5 b ) 

il 
--A1 = $(C++C-), 

m 

- m  

[+(C+ +C-)j + t(C+ -C-) g]  exp i (kx  + Zy) dkdl.  (4 .15~)  

The solution (4.15) will not be discussed for any particular choice of (ao, V O ) ~ , ~ .  

However, we may draw some general conclusions regarding (4.15) from the 
dependence off and g on the horizontal wave-number h = (k2 + F)*. 

Suppose the initial distribution is barotropic and dominated by energy in 
horizontal wave-numbers small compared to B-l. When the initial distribution 
is barotropic we have C+ = C- and we need only discuss the behaviour off and q, 
connected with the symmetric part of the solution. For small hB (4.6b, e )  may 

(4.1 6 a )  be written f = exp ( - qt) (1 + O(hB), 
(4.16b) 

'When hB + 0 (4.16) tend towards the corresponding expressions for the decay 
q = 442( 1 + O(hB)). 
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process in a homogeneous fluid. Thus when h is small compared with B-l and the 
initial distribution is barotropic, the influence of the stratification on the decay 
process is negligible. When the horizontal wave-number is large compared with 
B-1 (4.6b, c, e , f )  may be expressed approximately as 

f = exp ( - P t )  [exp ( - mz1) + exp ( - m41, (4.1 7 a) 
g = exp ( - rt)  [exp ( - mzl) - exp ( - mx2)], (4.17 b)  

q = 3 4 2  m = $ 4 2  Bh, (4.176) 
where z1 = 1-2 and x2 = l + x .  

According to (4.17), f and g are small everywhere except in layers of thickness 
m-l = (hB)-l near the boundaries. Thus the decay process penetrates only a 
distance (hB)-l into the fluid from the boundaries. Prom ( 4 . 1 7 ~ )  we may derive 
a dimensional characteristic timescale, T. 

T = q-l'f = 4 2  EG*(Zfi)-l, ( 4 . 1 8 ~ )  
where ED = ~/2!2(L/hB)~ (4.18 b )  
is the Ekman number based on the (dimensional) penetration depth L/hB 
associated with a perturbation with horizontal scale Llh. Thus the decay time 
may be considered as the 'spin up' time based on the real penetration depth 
instead of the depth of the fluid system. It may also be of interest to note that 
the horizontal scale BH associated with a given penetration depth H is closely 
analogous to a concept more familiar to meteorologists, namely the so-called 
' Rossby radius of deformation '. 

This qualitative behaviour of the decay time on the parameter B was correctly 
displayed by Holton (1965). A relation similar to  (4.6d) for the penetration height 
of disturbances driven from the lower boundary of a stable atmosphere was 
obtained by Rossby (1938). 

5. Decaying motion in closed region 

stratified fluid confined in the region 
We will study the development of axisymmetric perturbations on a rotating 

r < a, 
- 1  < 2 < 1. 

The containing surface is at  rest in the rotating reference frame and the stratifica- 
tion is of the form (2 .22) .  The vertical boundary at  T = a is assumed to be insu- 
lated. The analysis is very similar to what has been presented in $4, the only 
essential difference being that we have now a boundary condition on r = a to be 
considered. In  this section we will use the polar co-ordinate system ( r ,  9, x )  and 
the associated velocity vector (u,w,w) in terms of which (2 .19)-(2.21)  are 
expressed. 

As in $4, the boundary condition at  z = & 1 should be obtained from the 
Ekman theory. The total radial transport carried by the Ekman layer is 
given by 

where v is the interior zonal velocity field. The physical counterpart of wk+u is 

M, = - 9 4 2  Et2nrwb=+,,+O(E),  (5.1) 
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the zonal velocity just outside the thin boundary layer. If .B& changes with r, 
fluid must leave the boundary layer, and from elementary considerations (or 
from (4.2)) we obtain 

a 
2nrw = T 442  E* - [2nrvk,,d] + O(E). 

ar (5.2) 

As shown by Pedlosky (1967) and also by the present writer (see $2.2) the 
transport M, carried upwards by the boundary layer on r = a is given by 

M, = O(E).  (5.3) 

In  the corners ( r  = a, z = k 1) the boundary layer transport changes abruptly 
and a volume flux O(E*) will have to leave the corner. This will give rise to a singu- 
larity in the meridional circulation. It was precisely this possibility of a significant 
volume flux from the corner that was overlooked by Pedlosky (1967) in his 
treatment of the ‘stratified spin up’. In  this problem, as discussed later in this 
section, the meridional flow involves initially a concentrated outflow from the 
corner region caused by a jump in the boundary-layer transport. Since our 
analysis is valid only if we have to deal with smooth fields, such a concentrated 
outflow cannot be described. Thus we must require 

v = O(E4) at r = a, z = 1. (5.4) 

From (5.3) we obtain u = O(E)  a t  r = a .  (5.5) 

For the same reason as in $ 4 we choose 

6 = EJ 

andexpand (5.2), (5.4) and (5.5) in 8. The resulting lowest order equations become 

(5.7) 

a$pr = 0 at r = a, (5.8) 
vO=O at r = a , z = & l .  (5.9) 

Eliminating vo from (5 .7 )  with the aid of (2.19b) we obtain the alternative form 
of the boundary condition at  z = f 1. 

(5.10) 

From (2.19) combined with (5.8) we obtain 

avO/at = 0 at r = a. 

Thus (5.9) is valid for all times if 

w , , = ~ )  0 = 0 at r = a, z = k 1.  (5.11) 

The implications of (5.11) will be discussed later on in connexion with the so-called 
‘spin up’ problem. 

Equation (2.21) subject to the boundary conditions (5.8) and (5.10) has the 
general solution 
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where Jl(av) = 0, v = 1,2,3 ...; (5.12 b) 
fv = exp ( - qvt) Gosh mvz/coshm,, (5.12~) 
gv = exp ( - rvt) sinh m,z/sinh mu, (5.12d) 

mu = B(av/a), (5.12e) 
9; = $ 4 2  B(av/a) cosh mv/sinh m,, 
rv = $42 B(a,/a) sinhmv/coshmv. 

(5.12f 1 
(5.Q) 

The zonal velocity field associated with (5.12) is obtained with the aid of (2.19b) 

where 

vo = v:+ w%(r, x ) ,  (5.13~) 

Since #(t --f 00) = 0 we obtain from (5.7) combined with (5.9) 

We observe that (5.12 b) implies 
0 

Vw($=*1) = 0. 

0 = 0. 

(5.13 b) 

(5.14) 

(5.15) 

Equation (5.13) may be adjusted to any smooth initial distribution wyt=o)  
satisfying (5.11). As in 3 4 we find that w: is determined by the initial condition 
on the horizontal boundaries. 

Let us expand ~ 1 ) 1 = ~ , ~ =  in the first-order Bessel functions according to 
m 

(5.16) 

where (5.16) combined with (5.13) determines A,  and B, whereupon v$ is deter- 
mined from 0 0 q k o )  = %(,=O) +urn 

and we obtain vo = " ~ + @ ( t = O ) - ~ d ( t = O ) ,  0 0 (5.17 a)  
m 

where w: = c (W"+ + G-)f, + &(C,+ - CVJ 9") J1(avrla). (5.17 b) 

Let us now discuss the implications of condition (5.11) that we have been 
forced to impose on the initial condition for vo. Suppose that the initial distribu- 
tion of zonal velocity, outside the thin boundary layers at the walls, is given by 
F(r,  z )  with the property 

v = l  

P(r , z )  = O(1) at z =  +1, r = a. (5.18) 

In  view of (5,11), we are not allowed to use F(r , z )  as initial condition for wo. 
The reason for this failure is that vo only describes the development of the zonal 
velocity in a certain time range defined by 

where 
t* = 0(7), 

(20)-1 < 7 < Lyv. 
(5.19 a )  
(5.19b) 

In  (5.19), which is a consequence of (2.9b), t* represents dimensional time 
t* = 7t. Thus any changes of the zonal velocity field, occurring on a time scale 
small compared to 7, must be incorporated in the initial condition for vo. In space 
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we have a corresponding phenomena represented by the boundary layer, not 
described by vo, but taken into account through a modification of the boundary 
condition. According to (5.1) and (5.3), we obtain adiscontinuity in the boundary- 
layer transport, if the initial zonal velocity field is given by P(r,  2). As a conse- 
quence we obtain a concentrated meridional circulation close to the corner. This 

:5 

LEi 
f 

a--r a-r 
I*- (251) - I  A 5  (251) - 1  

t v  I-5ES t v  1-Ef 

FIGURE 2. The corner regions in ‘stratified spin up’. Illustration of the zonal velocity (w) 
just outside the Ekman layers and the associated meridional circulation (upper part of the 
figure) at t* N (2Ll-l (to the left) and t* - 5(2Q)-l (to the right). The width I of the region 
where the boundary-layer flux leaves the boundary layer, grows at least as 1 - E* t*/(2Q)-1. 
Thus when t* - T we have 1 S E4, since T 9 (2Q)-l. The thick arrows indicate the 
transport carried by the boundary layer. 

strong meridional flow will necessarily cause a development close to the corner 
with time scale small compared to T which should be taken into account when 
deriving the initial condition for vo. Because of analytical difficulties we are 
unable to describe this development in detail. However, it  is quite evident that 
the meridional circulation will tend to decrease the zonal velocity above the 
boundary layer, thereby eliminating the discontinuity in the boundary-layer 
transport. 

A qualitative picture of the development close to the corners is displayed in 
figure 2. Essentially figure 2 is based on the assumption that the rate of decay of 
the zonal velocity is roughly proportional to the intensity of the meridional 
circulation. In  reality the decay may be somewhat faster because of non-linear 
effects etc. 

The development in the corner region, although not known in detail, may be 
taken into account in a qualitative way if we assume 

( F ( r ,  x )  outside R,, 
4 - 0 )  = 0 a t  ~ = a ,  x = + _ l ,  (5.20) 
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where R, includes two small regions surrounding the corners (r = a, z = & 1). 
The non-dimensional length scale 1, of R, must be chosen sufficiently large for 
conditions (2.9) to hold when L is replaced by 1,L in the definition of R and E .  
Obviously we cannot predict the development of wo in the corner regions with 
(5.20) as initial condition. However, the amplitude C, for v < 1;' 

a 

FIGURE 3. The qualitative behaviour of w:,=,~) in stratified spin up at three stages in 
the development. Since the high wave-numbers have a higher rate of decay (see (5.12f)), 
the distribution becomes smoother when t increases. 

-1.0 

-0.5 

0 . 5 ~  a 

FIGURE 4. The interior zonal velocity at mid depth remaining as t + co, =O)r 

as a function of r for different values of Ba-I. Since the function w!& does not include the 
boundary layer a t  r = a the viscous boundary condition at r = a is not satisfied by v t .  
The real zonal velocity will drop to zero when approaching r = a within a region of 
dimensional thickness O(E4) L. Observe that w!&,(~ =o) N wfi =o) when Ba-1 is large, while 
w%(, =o) 1: 0 everywhere except close to r = a when Ba-l is small. 

is almost independent of the behaviour of w:t=o) in R, and the solution outside 
R, is dominated by these low wave-numbers. Thus the behaviour outside R, will 
in general be well described if we simply cut off the series at v = N c 1;l. 

According to (5.20) the so-called 'spin up' problem gives rise to the initial 
condition outside R,, 

at r = a ,  z = f l .  
0 

W ( k 0 )  = 

For v < N < 1;l the coefficients in (5.16) become 

C,, A 0,- = - 2/a, J2(av). 

Equation (5.22) inserted in (5.17) gives us the solution 

(5.21) 

(5.22) 

20 Fluid Mech. 36 
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which we expect to describe the zonal velocity outside R, in the time range 

The qualitative features of (5.23) are illustrated in figures 3, 4 and 5. We 
observe, that when Ba-l is large compared with 1, the spin up process only 
penetrates to the dimensional height B-laL (aL = radius of container). When 
Ba-l is small compared with 1, the process is essentially identical to the spin up 

t = O(1). 

1 

0 

- 1  
0.5a,. a 

FIGURE 5. Illustration of the meridional circulation (fort N 1) with dominating (Ba-1 N 10) 
and weak stratification (Ba-l - 0.1). The shaded areas are essentially untouched by the 
decay process which is most effective in the centre of the container. 

of a homogeneous fluid except in a region close to the vertical boundary of thick- 
ness BL, where L is the depth of the fluid region. The boundary layer at  r = a is 
not included in our description of the zonal velocity field. The thickness of this 
layer is O(E4)L. Thus when B = O(E*) the sm&ll region unaffected by the spin 
up will disappear and the process becomes identical to the homogeneous spin up. 
We must observe, however, that the description given by (5.23) is poor in this 
limit, particularly in the corner regions, since the initially jet-like character of 
the meridional flow is not effectively smoothed out when Ba-l is small. 
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